If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(q^2-16)=0
We get rid of parentheses
q^2-16=0
a = 1; b = 0; c = -16;
Δ = b2-4ac
Δ = 02-4·1·(-16)
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8}{2*1}=\frac{-8}{2} =-4 $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8}{2*1}=\frac{8}{2} =4 $
| 51+x+51-x=26 | | 3x+2(5x+8)=81 | | 6x+-1+x=4+-5x+3 | | 82=5u-8 | | 2z-10+80=180 | | 10x-3=-6 | | 32-11=2(y-4) | | 6k^2-16=-8k | | 3x+12x-4=3(5x+9) | | -2t^2-4t=-6 | | 5(2x-3)=3(3x+2)-17 | | 1x+7=8x+6 | | 12x/24=144 | | 8^3x=32,768 | | -4(u+7)=-8u-36 | | 3v^2+6v-35=10 | | 9x+3=-149-10x | | 1x+8=7x+6 | | 11x+11=2x+110 | | 2y-(3y+2)-6+(3y-8)=0 | | 2x+5=2(x+2.5) | | 5^3x=8^x-1 | | 2y-(3y+2)-6+(3y-8)=y | | 3x+1/8=x-3/6+5/12 | | -75=-3(8+x) | | G=3-4a | | 2y-20=-2(y+6) | | 2y-(3y+2)=6+(3y-8) | | 2-8x=2x-23 | | 16=7k-3k | | 2/3-3z/4+1/2=1/3 | | 3(w+5)=8w-10 |